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Abstract. We study the dynamical correlation functions and heat conduction for the simplest model of
quasi one-dimensional (1d) dielectric crystal i.e. a chain of classical particles coupled by quadratic and
cubic intersite potential. Even in the weakly nonlinear regime, numerical simulation on long enough chains
reveal sizeable deviations from the perturbative results in the form of a slower decay of correlations in
equilibrium. Their origin can be traced back to the subtle nonlinear effects described by mode-coupling
theories. Measures of thermal conductivity with nonequilibrium molecular-dynamics method confirm the
relevance of such effects for low-dimensional lattices even at very low temperatures.

PACS. 63.10.+a General theory – 05.60.-k Transport processes – 44.10.+i Heat conduction

1 Introduction

The theoretical study of physical models in one spa-
tial dimension is often justified by their mathematical
simplicity [1]. Besides this, they display intriguing pe-
culiarities that render them qualitatively different from
their three-dimensional counterparts. Actually, a further
and even more relevant motivation is the possibility of
modern experimental techniques to produce a variety
of real systems that could, at least in principle, be
effectively described by 1d models. Furthermore, the
latter are of great importance to approach the dynamical
and statistical properties of biological molecules like DNA
[2] or proteins [3].

In the present paper we wish to study the problem
of relaxation and heat transport in a classical chain of
oscillators with quadratic and cubic intersite potential.
Although this is a truly textbook model of an insulating
crystal, there is no, to the best of our knowledge, system-
atic analysis of the effects of anharmonicity. The results
may be of interest to describe experimental systems like
e.g. strongly anisotropic crystals [4,5], polymers [6] or
nanowires [7]. Some theoretical investigations of thermal
conductance for a quantum wire in ballistic [8] and
anharmonic [9] regimes have been also recently presented.
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The first issue that we address is the following: which
difference should one observe in this case with respect
to the usual 3d systems? One may argue that the cu-
bic nonlinearity (“three phonon” scattering) must be less
efficient due to the stronger constraints to be fulfilled in
1d, an argument that has been even invoked to explain
several experimental results [4,5]. A signature of this fact
on the dynamical correlations is thus to be expected. To
substantiate this argument, we studied the model within
the framework of the memory-function formalism [10]. A
perturbative calculation shows that correlation functions
display a power-law tail (Sect. 2), that we study in some
detail in the long-wavelength limit and compare, to some
extent, with molecular dynamics simulations. The latter
show that, even for relatively small anharmonicity, strong
non-perturbative effects due to subtle nonlinear interac-
tion arise for long enough chains. These can be quantita-
tively accounted for by mode-coupling theories [11] akin
to the ones usually applied for dense fluids [12].

The consequences of such a behaviour on nonequilib-
rium energy transport is discussed in Section 3. Even in
absence of such strong memory effects, the thermal con-
ductivity has been shown to diverge with the system size
both for 1d [13,14] and 2d lattices [15]. The character-
istic divergence law, a signature of the mentioned mode-
coupling effects [14], is recovered also in the present case.
This signals again the overwhelming role of nonlinearity
and fluctuations in low spatial dimensions.
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2 Correlation functions for an anharmonic
chain

We consider a set of atoms of mass m arranged on a ring
of N sites with spacing a. Let ul be the displacement
of the lth particle from its equilibrium position la. The
Lagrangian reads as

L =
N∑
l=1

[
m

2
u̇2
l −

mω2
0

2
(ul+1 − ul)2 − g

3
(ul+1 − ul)3

]
; (1)

where g is the coupling constant. This is the lowest-order
approximation of a generic anharmonic potential which
couples nearest neighbours. For historical reasons, it is
sometimes referred to as the Fermi-Pasta-Ulam α-model
(FPU-α). For convenience, from now on we will always
work in dimensionless units, where a, m and the angular
frequency ω0 are set to unity. This implies, for instance,
that the sound speed aω0 is also unity and that the energy
and coupling constant (that we still denote with g) are
measured respectively in units of mω0a

2 and mω0a
−1.

A difficulty of model (1) is the unboundedness of the
potential. Therefore, in order to avoid runaway instabil-
ity of trajectories (which could anyhow be overcome by
adding even terms of higher order) we will deal with suf-
ficiently small coupling constant and/or energies.

Upon introducing the complex amplitudes Uk through
the discrete Fourier transform

Uk =
1√
N

N∑
l=1

ul ei 2πk
N l, (2)

where k is an integer ranging between −N2 + 1 and N
2 we

can thus rewrite the equations of motion as

Ük + ω2
kUk = −gωk

1√
N

∑
k1+k2=k

ωk1ωk2Uk1Uk2 ≡ Fk

(3)

with Fk being the interaction force among modes. The
condition on the indices of the sum is intended to be
modulo N while

ωk = 2
∣∣ sin(πk

N

) ∣∣. (4)

is the usual harmonic (phononic) dispersion law.

2.1 Memory effects

Let us consider the normalized correlation function

Gk(t) = βω2
k 〈Uk(t)U∗k (0)〉, (5)

which is defined in such a way that Gk(0) = 1 (β is the in-
verse temperature). In the framework of the Mori-Zwanzig
projection approach, it can be shown that it satisfies the
equation of motion [10]

G̈k +
∫ t

0

Γk(t− s) Ġk(s)ds+ ω2
kGk = 0. (6)

The memory function Γk accounts for memory effects and
can be connected to the nonlinear force by the fluctuation-
dissipation relation

Γk(t) = β〈Fk(t)F∗k (0)〉. (7)

Notice that here it is also implicitly assumed that slow
terms possibly contained in Fk are negligible in the ther-
modynamic limit [11].

In the following we will evaluate the memory function
to the lowest order of perturbation theory. This amounts
to evaluating the average in (7) on the measure of the un-
perturbed system (g = 0). A straightforward calculation
yields

Γk(t) ≈ Cg2ω2
k

β

1
N

∑
k1+k2=k

cosωk1t cosωk2t (8)

where C is a suitable numerical constant. Rather remark-
ably, the Laplace transform of Γk can be evaluated exactly
in the large N limit (see the Appendix for some details of
the calculation). Indeed, if we let 2πk/N → q and define

Γ (q, z) =
∫ ∞

0

Γ (q, t)e−izt dt (9)

we obtain the simple result

Γ (q, z) = Kω2(q)

 1√
Ω2

+(q)− z2
+

1√
Ω2
−(q)− z2

 ,
(10)

where we have introduced the new (small) coupling
parameter K = Cg2/2β and

Ω+(q) = 4 cos
q

4
, Ω−(q) = 4| sin q

4
|. (11)

Inversion of the Laplace transform yields [16]

Γ (q, t) = Kω2(q) [J0(Ω+(q)t) + J0(Ω−(q)t)] , (12)

where J0 is the Bessel function. With this result at
hand, we can give a closed expression for G by solving
equation (6) with the Laplace transform method that
yields the formal solution (with Ġ(q, t = 0) = 0)

G(q, z) =
iz + Γ (q, z)

z2 − ω2(q)− izΓ (q, z)
· (13)

If, like in the present case, the dissipative effects are weak,
the latter expression can be approximated as

G(q, z) =
−i/2

z − ω(q)− iΓ (q, z)/2
+

−i/2
z + ω(q)− iΓ (q, z)/2

(14)

and the correlation function are determined for every q by
the standard methods of inverse Laplace transformation
i.e. by determining the singularities in the complex plane
of G.
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2.2 Long wavelengths

Let us focus on the effective dynamics of the long-
wavelength modes. The latter are the slowest ones and are
directly responsible of energy transport and therefore of
main interest here. For q → 0 one has from equation (11)
Ω+ ≈ 4 and ω ≈ Ω− ≈ |q|. This implies that the first term
of the memory function decays on a much faster time scale
and can be neglected so that

Γ (q, z) ≈ Kq2√
q2 − z2

· (15)

Therefore, in this limit, the transform of the mode auto-
correlation satisfies the scaling relation

G(q, z) =
1
|q|G

(
z

|q|

)
, (16)

where, from equation (14)

G(w)=
−i/2

w − 1− iK/2
√

1− w2
+

−i/2
w + 1− iK/2

√
1− w2

·

(17)

From equations (16) and (15) it follows immediately that
G(q, t) depends only on the product |q|t.

To estimate the behaviour of G(q, t) in a more detailed
way one has to study the properties of the function G(w).
Besides of the branch cut in z = ±1, the latter has two
simple poles in the upper part of the complex plane that,
for small K, are approximatively given by ±1 + i

√
3

4 K
2/3

(we neglect the term O(K2/3) in the real part since this
gives only a small correction to the unperturbed fre-
quency). Accordingly, the inversion of the Laplace trans-
form (17) yields two contributions to the decay, the ex-
ponential plus some power-law tails. More precisely, the
calculation yields

G(q, t) ∝ exp(−γ(q)|t|) cos qt −Kf(K, |q|t) (18)

where we have introduced the (short times) relaxation rate

γ(q) =
√

3
4
K2/3 |q|. (19)

Notice how the square-root in (17) affects the functional
dependence of the relaxation time on the coupling con-
stant and therefore on temperature. The behaviour of the
slowly decaying correction

f(K, τ)=
1

2π

∫ +1

−1

dw
√

1− w2

(1− w2)(w + 1)2 +K2/4
coswτ.

(20)

has been evaluated numerically finding that, as expected,
the latter oscillates with a period close to 2π while its
envelope decays for large τ as K−2τ−3/2.
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Fig. 1. The normalized autocorrelation function of the nonlin-
ear force Fk for β = 104, g = 1.0, N = 128, k = 1 (correspond-
ing to q = 0.0490). The thick solid line is the (approximate)
perturbative result J0/2 (see Eq. (12)).

2.3 Comparison with the numerical simulations

In the present section we compare the results of the
perturbative calculation with the outcomes of molecular
dynamics simulations. The latter were performed at equi-
librium and in the microcanonical ensemble by integrating
the equations of motion with a third order symplectic
algorithm [17] and starting from random initial condi-
tions. We then let the system evolve for a certain tran-
sient time in order to start the measures from a generic
phase-space point. The energy per particle has been fixed
in every computation and the corresponding temperature
has been measured as twice the average kinetic energy
density. In computing spectra and correlations functions
a Fast Fourier Transform routine has been used, and the
data are usually averaged over an ensemble of several tra-
jectories (typically between 20 and 200) to reduce statis-
tical fluctuations.

As a first check we compared the perturbative expres-
sion of the memory function (12) with the correlation of
the nonlinear force appearing in equation (7) (see Fig. 1).
The two agree well on short times, but some deviation
is observed after a few oscillation periods. Furthermore,
the temperature and wavenumber dependence of the re-
laxation rates has been checked by measuring the initial
decay rate of the envelope of G(q, t). As seen in Figures 2
and 3, a reasonable agreement with the result of pertur-
bation theory is obtained for q > 0.006 (corresponding
to N < 103). However, for smaller wavenumbers (longer
chains) the data crossover to a different behaviour that is
consistent with the law q5/3. The latter is the result ex-
pected from mode-coupling theory and has been numeri-
cally observed for the model with quartic nonlinearity at
much larger temperatures [11].

We can therefore conclude that, despite the smallness
of the perturbative parameter (K ∼ 0.01), the dynamical
effects of nonlinear mode interaction take over on longer
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Fig. 2. Scaling of the relaxation rates with the wavenumber
q for g = 0.25 and β = 10.0. The straight line is the result of
perturbation theory.
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Fig. 3. Scaling of the relaxation rates with temperature for
the first Fourier mode of a chain of length N = 256 (trian-
gles) and N = 512 (squares). The straight line is the result of
perturbation theory.

(“hydrodynamic”) time/length scales. Eventually, this
originates substantial deviations from the results obtained
in the previous section.

3 Thermal conduction

In the present section we will study the consequences on
the phenomenon of stationary heat transport along the
chain. Let us discuss the case of linear response i.e. small
thermal gradients. We first evaluate the asymptotic de-
cay of the Green-Kubo integrand in the framework of the
perturbative calculation described above and compare the
results with numerical simulations.

3.1 The Green-Kubo formula

If we neglect the anharmonic term (which contributes to
the conductivity only to order g2), the heat current J is

approximated by its harmonic part [14]

J ≈ JH =
i

2N

N/2∑
k=−N/2+1

vkωk

(
UkU̇

∗
k − U∗k U̇k

)
(21)

where vk = ω′k is the phase velocity. It is convenient to
recast the above expression in the new variables Ak =
eiωktUk. Taking into account the fact that

∑
k vkωk|Ak|2 =

0 for symmetry reasons (vk = −v−k), one finds

JH =
i

2N

∑
k

vkωk

(
AkȦ

∗
k −A∗kȦk

)
. (22)

The integrand appearing in the Green-Kubo formula for
thermal conductivity

κ = kBβ
2N

∫ ∞
0

〈J(t)J(0)〉dt (23)

contains correlation functions of quantities that are
quadratic inAk. As the latter quantities are slowly varying
(Ȧk � ωkAk) we get the approximate expression

N〈J(t)J(0)〉 ≈ 1
4βN

∑
k

v2
k 〈Ȧk(t)Ȧ∗k(0)〉 + c.c. (24)

where we have also taken into account the equipartition
of energy 〈ω2

k|Ak|2〉 = 1/β.
Let us assume that the large t behaviour of (24) is

dominated by long-wavelength modes. On the basis of the
above discussion one expects that in this limit the auto-
correlation of Ȧ(q, t) will depend only on |q|t, i.e.

〈Ȧ(q, t)Ȧ∗(q, 0)〉 =
1
β
A(|q|t), (25)

where A is a suitable function. Replacing the sum in (24)
with an integral and taking into account the fact that
v(q)→ 1 for q → 0 one gets

N〈J(t)J(0)〉 ∝ 1
tβ2

∫ +∞

0

A(x)dx. (26)

Since that the integral in this formula is convergent be-
cause of the asymptotic behaviour of (20), we can conclude
that the Green-Kubo integrand decays as 1/t for large t
and that the thermal conductivity is infinite.

To estimate the divergence law for a finite chain, one
can cut off the integral in the formula (23) up to some time
proportional to the length N [14]. As a result, κ should
diverge logarithmically with the system size. In the next
subsection we will compare this prediction with numerical
results.

3.2 Nonequilibrium simulations and finite-size
conductivity

A simple and efficient way to compute transport co-
efficients is to use nonequilibrium molecular dynamics.
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First of all we consider the chain with fixed ends (u0 =
uN+1 = 0) and let the first and the Nth oscillators inter-
act with two reservoirs operating at different temperatures
TR = T +∆T/2 and TL = T −∆T/2, respectively. In such
a way a net heat current flows through the lattice. The
thermal conductivity for the finite chain can thus be mea-
sured as the ratio between such a flux and the applied
temperature gradient.

Among the several possible choices, we simulated the
effect of the reservoirs by means of Nosé-Hoover ther-
mostatting method [18]. The latter preserves the deter-
ministic nature of the dynamics and is simply imple-
mented by adding the force terms −ζL u̇1 and −ζR u̇N to
the equation of motion of the first and last oscillator re-
spectively. The “thermal” variables ζL, ζR, evolve accord-
ing to the dynamical equations [18]

ζ̇L =
1
τ2

(
u̇2

1

TL
− 1
)

ζ̇R =
1
τ2

(
u̇2
N

TR
− 1
)
, (27)

where τ is the thermostat response time and controls the
strength of the coupling between the reservoirs and the
chain. The above prescriptions imply that the kinetic en-
ergy of the boundary particles fluctuates around the im-
posed average value, thus mimicking an interaction with
a reservoir in canonical equilibrium.

The simulations were performed integrating the equa-
tion of motion for the bulk particles together with the (27)
with a fourth-order Runge-Kutta algorithm. The bound-
ary temperatures were kept fixed so that upon increas-
ing the lattice length the applied temperature gradient
∆T/N is decreased and the Green-Kubo formula becomes
more and more accurate. Both the time averaged kinetic
temperatures Tl = u̇2

l and heat flux J where [19,20]

J =
1

2N

∑
l

(u̇l+1 + u̇l)
[
ul+1 − ul + g(ul+1 − ul)2

]
,

(28)

have been computed over a single trajectory (approxima-
tively 106 time units) started from random initial condi-
tions. In every run, a suitably long transient (about 104

time units) has been discarded in order to let the system
reach a statistically stationary state with each oscillator
in local equilibrium.

The thermal conductivity is thus computed as κ =
|J |N/∆T . It has to be noted that the latter quantity rep-
resents an effective transport coefficient including both
boundary and bulk scattering mechanisms. Alternatively,
one could as well consider, say, a subchain far enough from
the ends and compute a bulk conductivity as the ratio be-
tween |J | and the actual temperature gradient measured
there. Since the latter will also be inversely proportional
to N , the resulting scaling with size (which is the main
issue here) will be of course the same with both defini-
tions. Besides this, the first choice avoids the difficulty of
dealing with very small gradients (see below).
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Fig. 4. Thermal conductivity of the FPU-α model versus lat-
tice length N for g = 0.25, T = 0.1, τ = 1.0 and ∆T = 0.1
(triangles), ∆T = 0.02 (full circles). The crosses (resp. dia-
monds) refer to the harmonic (resp. FPU-β) models for T = 0.1
and ∆T = 0.02. The inset shows the logarithmic derivative
∆ log κ/∆ logN versus logN of the data for the FPU-α (full
circles) and FPU-β (diamonds) respectively.

The dependence of κ on the chain length is reported
in Figure 4 for two different series of simulations with
T = 0.1 and for relatively small (∆T = 0.02) and large
(∆T = 0.1) applied temperature differences. In both cases
κ increases linearly with N for N < 103. Moreover, no
sizable temperature gradient forms along the chain. Both
facts are a signature of the weakness of the anharmonic
effects up to this time/length scales, as confirmed by com-
paring with data obtained (using the same setup and pa-
rameters) for the pure harmonic (g = 0) chain. The latter
displays the expected linear increase of κ with N [21] and
differ by less than a few percent from the anharmonic case
in this range of system sizes (compare full dots and crosses
in Fig. 4). The fact that κ is smaller for larger ∆T can be
thus be attributed to stronger boundary scattering that,
in turn, tends to reduce the conductivity.

For largerN the bulk anharmonic scattering takes over
and, accordingly, the two curves for different∆T approach
one the other. The conductivity increases more slowly with
the size, and we can tentatively measure the effective di-
vergence law of the form Nα. The data in the inset of
Figure 4 (full dots) are consistent with a convergence to
the asymptotic value α = 2/5 expected from the the-
ory and observed in previous works on other 1d models
[14,22]. Notice also that the crossover size is in reasonable
agreement with the behavior reported in Figure 2.

In order to clarify the role of different anhar-
monic interactions, we also compared the above re-
sults with some measurements for a chain with quar-
tic potential. More precisely, we considered the so-called
Fermi-Pasta-Ulam β−model (FPU-β) where the cubic
term in the Lagrangian (1) is replaced by (ul+1 − ul)4/4.
The corresponding coupling constant has been set to the
value 1.0 to have about the same ratio between the average



446 The European Physical Journal B

anharmonic and harmonic potential energies as in the pre-
vious case (approximatively 0.04 for T = 0.1). With such
a choice, the strength of the nonlinear terms (as measured
by the suitable perturbative parameters) are of the same
order and a comparison between the two models makes
sense. As shown again in Figure 4, the values of κ are
now definitely smaller (about one order of magnitude at
N = 1024). Moreover, a linear temperature profile sets in
along the chain and the data neatly approach a power-
law behaviour with an exponent very close to 2/5 already
for N > 64 (diamonds in the inset of Fig. 4). We there-
fore conclude that, consistently with the general argument
given in the Introduction, the cubic nonlinearity is much
less effective for what concerns the process of energy dif-
fusion and transport in 1d.

In conclusion, we have shown that the dynamical cor-
relations and transport in 1d lattice are strongly affected
by nonlinear effects which are not accounted for by the
simple perturbative analysis reported above even in the
weakly anharmonic regime. For the model with cubic in-
tersite potential, they manifest themselves e.g. in a faster
divergence (Nα rather than logN) of the thermal con-
ductivity with the size N . Further consequences of those
issues on other physical phenomena like energy diffusion or
wavepacket propagation will be subject of future research.

I acknowledge useful discussions with Roberto Livi, Antonio
Politi, Stefano Ruffo and the research group Dynamics of Com-
plex Systems in Florence. This work is partially supported by
the INFM project Equilibrium and nonequilibrium dynamics
in condensed matter.

Appendix: Evaluation of the memory function

In this Appendix we sketch some details of the perturba-
tive calculation of the memory function for the quadratic
force. One wants to evaluate the Laplace transform of the
sum appearing in equation (8). As a first step, we replace
the sum for large N by the integral over the Brillouin zone

1
2π

∫ +π

−π
dq′ cosω(q′)t cosω(q − q′)t. (A.1)

Its transform is thus given by

iz
4π

∫ +π

−π
dq′[

1
(ω(q′) + ω(q − q′))2 − z2

+
1

(ω(q′)− ω(q − q′))2 − z2
]. (A.2)

It is convenient to perform the change of variable u =
ei(q′−q/2)/2. After some algebra, the integral reads as

z

2π

∫
du
u

[
1

Ω2
−(u+ 1/u)2/4 + z2

+
1

Ω2
+(u− 1/u)2/4 + z2

]
(A.3)

where the frequencies Ω±(q) are defined in equation (11)
and the integration is along a path joining the points
± exp(−iq/2). By means of the further change of variable
u2 = ζ, the integration can be performed on the unit
circle. The result (10) is thus obtained by means of the
theorem of residues.
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